Using absolute gravimetry, geodetic networks can be surveyed to realize a homogeneous gravity standard of regional to global extent and to monitor time dependent variations in the Earth’s gravity field. With the receipt of the transportable free-fall gravimeter JILAg-3 at the Institut für Erdmessung (IfE, Leibniz Universität Hannover) in 1986, projects were initiated with a main objective to improve national and international gravimetric networks. Deficiencies in the definition of the absolute datum (gravimetric scale and level) could be overcome. As a second goal, absolute gravity determinations were performed to support the geodynamic research in regions where geophysical phenomena deform the Earth’s surface. Presently, the FG5 gravimeter is the state-of-the-art in the measurements of absolute gravity. With the high measuring accuracy, new applications have been risen, e.g. the monitoring of environmental changes. For IfE, the FG5-220 is the second absolute meter obtained in 2002, and is the follow-up of the JILAg-3. Comparisons of results with both absolute gravimeters among themselves and with other instruments show that the results from both instruments are well adjusted to the international gravity standard. But a bias of +0.09 µm/s2 has to be considered for the JILAg-3 measurements when comparing with FG5-220 results. As a case study for an interdisciplinary long-term research, a Danish-German cooperation is described. Besides the establishment of a national gravimetric reference, a strong geophysical background characterizes the joint projects performed since 1986.